ASTM-E1363 Standard Test Method for Temperature Calibration of Thermomechanical Analyzers

ASTM-E1363 - 2023 EDITION - CURRENT
Show Complete Document History

Document Center Inc. is an authorized dealer of ASTM standards.
The following bibliographic material is provided to assist you with your purchasing decision:

Standard Test Method for Temperature Calibration of Thermomechanical Analyzers
ORDER

Price:

$69.00        


Want this as a site license?

Scope

1.1 This test method describes the temperature calibration of thermomechanical analyzers from −50 °C to 1500 °C. (See Note 1.)

1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.3 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 7 and Note 12.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Significance and Use

5.1 Thermomechanical analyzers are employed in their various modes of operation (penetration, expansion, flexure, etc.) to characterize a wide range of materials. In most cases, the value to be assigned in thermomechanical measurements is the temperature of the transition (or event) under study. Therefore, the temperature axis (abscissa) of all TMA thermal curves must be accurately calibrated either by direct reading of a temperature sensor or by adjusting the programmer temperature to match the actual temperature over the temperature range of interest.

Keywords

calibration; temperature; thermal analysis; thermomechanical analysis;

To find similar documents by ASTM Volume:

14.01 (Healthcare Informatics)

14.02 (General Test Methods; Forensic Psychophysiology; Forensic Sciences; Terminology; Conformity Assessment; Statistical Methods; Nanotechnology; Forensic Engineering; Manufacture of Pharmaceutical Products)

To find similar documents by classification:

17.200.20 (Temperature-measuring instruments Including thermostats Medical thermometers, see 11.040.55)

This document comes with our free Notification Service, good for the life of the document.

This document is available in either Paper or PDF format.

 

Customers who bought this document also bought:

NAS-410
NAS Certification and Qualification of Nondestructive Test Personnel

AWS-D17.1/D17.1M
Specification for Fusion Welding for Aerospace Applications

MIL-H-7199
Heat Treatment of Wrought Copper-Beryllium Alloys, Process for (Copper Alloys: Numbers C17000, C17200, C17300, C17500, and C17510) (Superseded by SAE-AMS-H-7199)

Document Number

ASTM-E1363-23

Revision Level

2023 EDITION

Status

Current

Modification Type

Revision

Publication Date

Aug. 15, 2023

Document Type

Test Method

Page Count

5 pages

Committee Number

E37.10