ASTM-D5293 › Standard Test Method for Apparent Viscosity of Engine Oils and Base Stocks Between –10 °C and –35 °C Using Cold-Cranking Simulator
The following bibliographic material is provided to assist you with your purchasing decision:
Scope
1.1 This test method covers the laboratory determination of apparent viscosity of engine oils and base stocks by cold cranking simulator (CCS) at temperatures between –10 °C and –35 °C at shear stresses of approximately 50 000 Pa to 100 000 Pa and shear rates of approximately 105 to 104 s–1 for viscosities of approximately 900 mPa·s to 25 000 mPa·s. The range of an instrument is dependent on the instrument model and software version installed. Apparent Cranking Viscosity results by this method are related to engine-cranking characteristics of engine oils.
1.2 A special procedure is provided for measurement of highly viscoelastic oils in manual instruments. See Appendix X2.
1.3 Procedures are provided for both manual and automated determination of the apparent viscosity of engine oils using the cold-cranking simulator.
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Section 8.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
Significance and Use
5.1 The CCS apparent viscosity of automotive engine oils correlates with low temperature engine cranking. CCS apparent viscosity is not suitable for predicting low temperature flow to the engine oil pump and oil distribution system. Engine cranking data were measured by the Coordinating Research Council (CRC) L-495 test with reference oils that had viscosities between 600 mPa·s and 8400 mPa·s (cP) at –17.8 °C and between 2000 mPa·s and 20 000 mPa·s (cP) at –28.9 °C. The detailed relationship between this engine cranking data and CCS apparent viscosities is in Appendixes X1 and X2 of the 1967 T edition of Test Method D26026 and CRC Report 409.5 Because the CRC L-49 test is much less precise and standardized than the CCS procedures, CCS apparent viscosity need not accurately predict the engine cranking behavior of an oil in a specific engine. However, the correlation of CCS apparent viscosity with average CRC L-49 engine cranking results is satisfactory.
5.2 The correlation between CCS and apparent viscosity and engine cranking was confirmed at temperatures between –1 °C and –40 °C by work on 17 commercial engine oils (SAE grades 5W, 10W, 15W, and 20W). Both synthetic and mineral oil based products were evaluated. See ASTM STP 621.7
5.3 A correlation was established in a low temperature engine performance study between light duty engine startability and CCS measured apparent viscosity. This study used ten 1990s engines at temperatures ranging from –5 °C down to –40 °C with six commercial engine oils (SAE 0W, 5W, 10W, 15W, 20W, and 25W).8
5.4 The measurement of the cranking viscosity of base stocks is typically done to determine their suitability for use in engine oil formulations. A significant number of the calibration oils for this method are base stocks that could be used in engine oil formulations.
Keywords
apparent viscosity; cold cranking; cranking; engine oils; petroleum and petroleum products; viscosity;
To find similar documents by ASTM Volume:
05.02 (Petroleum Products and Lubricants (II): D3711 - D6122)
To find similar documents by classification:
This document comes with our free Notification Service, good for the life of the document.
This document is available in either Paper or PDF format.
Document Number
ASTM-D5293-20
Revision Level
2020 EDITION
Status
Current
Modification Type
Revision
Publication Date
June 12, 2020
Document Type
Test Method
Page Count
12 pages
Committee Number
D02.07