ASTM-E1894 › Standard Guide for Selecting Dosimetry Systems for Application in Pulsed X-Ray Sources
The following bibliographic material is provided to assist you with your purchasing decision:
Scope
1.1 This guide provides assistance in selecting and using dosimetry systems in flash X-ray experiments. Both dose and dose rate techniques are described.
1.2 Operating characteristics of flash X-ray sources are given, with emphasis on the spectrum of the photon output.
1.3 Assistance is provided to relate the measured dose to the response of a device under test (DUT). The device is assumed to be a semiconductor electronic part or system.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
Significance and Use
4.1 Flash X-ray facilities provide intense bremsstrahlung radiation environments, usually in a single sub-microsecond pulse, which often fluctuates in amplitude, shape, and spectrum from shot to shot. Therefore, appropriate dosimetry must be fielded on every exposure to characterize the environment, see ICRU Report 34. These intense bremsstrahlung sources have a variety of applications which include the following:
(1) Studies of the effects of X-rays and gamma rays on materials.
(2) Studies of the effects of radiation on electronic devices such as transistors, diodes, and capacitors.
(3) Computer code validation studies.
4.2 This guide is written to assist the experimenter in selecting the needed dosimetry systems for use at pulsed X-ray facilities. This guide also provides a brief summary on how to use each of the dosimetry systems. Other guides (see Section 2) provide more detailed information on selected dosimetry systems in radiation environments and should be consulted after an initial decision is made on the appropriate dosimetry system to use. There are many key parameters which describe a flash X-ray source, such as dose, dose rate, spectrum, pulse width, etc., such that typically no single dosimetry system can measure all the parameters simultaneously. However, it is frequently the case that not all key parameters must be measured in a given experiment.
Keywords
calorimeter; Compton diode dosimetry; dosimetry; optical waveguide dosimetry; photoconductive detector (PCD); PIN diode dosimetry; pulsed X-ray source; radiochromic dosimetry system; scintillator-photodetector dosimetry; thermoluminescence dosimetry;
To find similar documents by ASTM Volume:
12.02 (Nuclear (II), Solar, and Geothermal Energy)
To find similar documents by classification:
17.240 (Radiation measurements Including dosimetry Radiation protection, see 13.280)
This document comes with our free Notification Service, good for the life of the document.
This document is available in either Paper or PDF format.
Customers who bought this document also bought:
MIL-STD-883Microcircuits
MIL-PRF-38535
Integrated Circuits (Microcircuits) Manufacturing, General Specification for
IPC/EIA-J-STD-002
Solderability Tests for Component Leads, Terminations, Lugs, Terminals and Wires
Document Number
ASTM-E1894-24
Revision Level
2024 EDITION
Status
Current
Modification Type
Revision
Publication Date
May 7, 2024
Document Type
Guide
Page Count
19 pages
Committee Number
E10.07